模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (2): 163-170    DOI: 10.16451/j.cnki.issn1003-6059.201602008
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于多视图聚类的自然图像边缘检测*
张衡,谭晓阳,金鑫
南京航空航天大学 计算机科学与技术学院 南京 210016
Multi-view Clustering Based Natural Image Contour Detection
ZHANG Heng, TAN Xiaoyang, JIN Xin
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

全文: PDF (2024 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 梯度特征对线性光照变化保持不变性,而稀疏编码方法能从图像数据点中得到数据的统计特性.多视图聚类算法是把同一聚类中的不同属性集合视为不同视图,考虑不同视图的重要性进行协同聚类.文中提出基于多视图聚类的图像边缘检测算法,将两种特征结合在一个统一的多视图聚类框架中,从而有效提高边缘检测的鲁棒性.该算法使用图像局部特征与稀疏编码结合的方式训练模型,并增加图像像素的空间信息和曲率信息的约束获得图像全局特征,保证检测边缘的准确性和区域一致性.在两个公开的数据库上的实验表明文中算法的可行性和有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张衡
谭晓阳
金鑫
关键词 边缘检测多视图聚类梯度特征稀疏编码像素曲率    
Abstract:The gradient feature gives an invariant description for linear lighting changes while sparse coding methods can exploit the data statistics from the image data point. In multi-view clustering algorithm, different attributes set in the same cluster are considered as different views, and the importance of different views is taken into account for co-clustering. An algorithm based on multi-view clustering for image contour detection is proposed and it integrates both features into a unified multi-view clustering framework to effectively improve the robustness of the detection system. The combination of image local features and sparse code features is utilized to train model, and the spatial information and curvature information of the image pixels are added to obtain the global features and ensure the accuracy of the contour detection and region consistency. Experiments on two large public available datasets show the feasibility and effectiveness of the proposed algorithm.
Key wordsContour Detection    Multi-view Clustering    Gradient Feature    Sparse Coding    Pixel Curvature   
收稿日期: 2015-05-12     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61373060,61073112)、江苏自然科学基金项目(No.BK2012793)资助
作者简介: 张 衡(通讯作者),男,1990年生,硕士,主要研究方向为机器学习、图像处理.E-mail:zhangheng@nuaa.edu.cn.
(ZHANG Heng (Corresponding author), born in 1990, master. His research interests include machine learning and image processing.)
谭晓阳,男,1971年生,博士,教授,主要研究方向为人工智能、模式识别、计算机视觉.E-mail:x.tan@nuaa.edu.cn.
(TAN Xiaoyang, born in 1971, Ph.D., professor. His research interests include artificial intelligence, pattern recognition and computer vision.)
金 鑫,男,1987年生,博士,主要研究方向为模式识别、计算机视觉.E-mail:x.jin@nuaa.edu.cn.
(JIN Xin, born in 1987, Ph.D.. His research interests include pattern recognition and computer vision.)
引用本文:   
张衡,谭晓阳,金鑫. 基于多视图聚类的自然图像边缘检测*[J]. 模式识别与人工智能, 2016, 29(2): 163-170. ZHANG Heng, TAN Xiaoyang, JIN Xin. Multi-view Clustering Based Natural Image Contour Detection. , 2016, 29(2): 163-170.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201602008      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I2/163
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn